Leukocyte Production of Inflammatory Mediators Is Inhibited by the Antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol

نویسندگان

  • Jezrom B Fordham
  • Afsar Raza Naqvi
  • Salvador Nares
چکیده

Antioxidants possess significant therapeutic potential for the treatment of inflammatory disorders. One such disorder is periodontitis characterised by an antimicrobial immune response, inflammation, and irreversible changes to the supporting structures of the teeth. Recognition of conserved pathogen-associated molecular patterns is a crucial component of innate immunity to Gram-negative bacteria such as Escherichia coli, as well as the periodontal pathogen Aggregatibacter actinomycetemcomitans. In this study, we investigated the antioxidants Phloretin, Silymarin, Hesperetin, and Resveratrol to ascertain whether they altered the production of inflammatory mediators by innately-activated leukocytes. Peripheral blood mononuclear cells were stimulated with lipopolysaccharide purified from Aggregatibacter actinomycetemcomitans, and the production of cytokines, chemokines, and differentiation factors was assayed by enzyme-linked immunosorbent assay, cytometric bead array, and RT-PCR. Significant inhibition of these factors was achieved upon treatment with Phloretin, Silymarin, Hesperetin, and Resveratrol. These data further characterise the potent anti-inflammatory properties of antioxidants. Their ability to inhibit the production of inflammatory cytokines, chemokines, and differentiation factors by a heterogeneous population of leukocytes has clear implications for their therapeutic potential in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proliferative and Anti-Inflammatory Effects of Resveratrol and Silymarin on Human Gingival Fibroblasts: A View to the Future

Objectives It has been demonstrated that polyphenol components such as silymarin and resveratrol have anti-inflammatory properties. Periodontitis is a chronic inflammatory disease that leads to the breakdown of dental supporting tissues and tooth loss. The purpose of this study was to investigate the anti-inflammatory effects of silymarin and resveratrol on lipopolysaccharide (LPS)-induced infl...

متن کامل

Effects of cis-resveratrol on inflammatory murine macrophages: antioxidant activity and down-regulation of inflammatory genes.

This study investigated for the first time the effects of the cis isomer of resveratrol (c-RESV) on the responses of inflammatory murine peritoneal macrophages, namely on the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during the respiratory burst; on the biosynthesis of other mediators of inflammation such prostaglandins; and on the expression of inflammator...

متن کامل

Reduction in Dental Hypersensitivity with Nano-Hydroxyapatite, Potassium Nitrate, Sodium Monoflurophosphate and Antioxidants#

OBJECTIVE This clinical study aimed to evaluate effectiveness of a commercially available toothpaste containing potassium nitrate, sodium monoflurophosphate, and nano-hydroxyapatite as well as antioxidants phloretin, ferulic acid and silymarin in reducing dental hypersensitivity in adults. METHODS The clinical trial enrolled patients with a history of dentin hypersensitivity. A test toothpast...

متن کامل

Hydrophilic Phytochelators in Iron Overload Condition

Background: Iron overload can cause many complications and damage many organs as well as physiologic functions. Consumption of phetochemicals and flavonoids with iron chelating ability, instead of synthetic iron chelators, can be less harmful and more effective. The aim of this review is to investigate hydrophilic phytochelators in iron overload condition. Methods: In this review, the possible ...

متن کامل

The protective effects of silymarin on ischemia-reperfusion injuries: A mechanistic review

Ischemia-reperfusion injuries (IRI) occur in different clinical conditions such as stroke, trauma, organ transplantation, and so on. Ischemia damages mainly arise from oxygen depletion in tissues. The lack of oxygen as the last acceptor of electron in the respiratory chain causes a decrease in ATP production and eventually leads to disruption of membrane transport, acidosis, cellular edema and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014